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Abstract: The authors consider the acquisition of measurements from a source, representing a physical phenomenon, by
means of sensors deployed at different distances, and measuring random variables (r.v.’s) that are correlated with the
source output. The acquired values are transmitted over a wireless channel to a sink, where an estimation of the source
has to be constructed, according to a given distortion criterion. In the presence of Gaussian random variables (r.v.’s) and
a Gaussian vector channel, the authors are seeking optimum real-time joint source-channel encoder–decoder pairs that
achieve a distortion sufficiently close to the theoretically optimal one, under a global resource constraint, by activating
only a subset of the sensors. The problem is posed in a team decision theoretic framework, and the optimal strategies are
approximated by means of neural networks. The analysis investigates the generalisation capabilities of the proposed
approach, by showing insights into the structure of the problem. The surprising outcome is that a quasi-static application
of the approach reveals to be sufficient to maintain quasi-optimal performance under a dynamic environment (e.g. with
respect to nodes’ positions).
1 Introduction

1.1 Problem and state of the art

Sensor networks are often employed to measure some
physical quantities of interest (e.g. temperature, pressure,
concentration of chemicals etc.), with the measurements
being distributed in space and time. It is also often the case
that a number of sensors are spread in random fashion over
the area of interest, and have to forward their measured
values over a noisy wireless channel to one or more sinks,
which then perform an estimation of the desired quantity,
based on some fidelity criterion. In many situations, the
quantities being observed are analogue ones, and can be
represented by continuous random variables (r.v.’s), as can
the noise on the communication channels. Therefore when
looking at the transmission and estimation problem, one is
confronted with the choice of whether to adopt digital
transmission, and accordingly try to find encoder–decoder
pairs that follow the separation theorem of information
theory [1] (by achieving optimality asymptotically in the
transmission delay and disregarding complexity), or to
remain in the domain of analogue signals and seek joint
source-channel coding pairs, with the additional
requirement of being constrained in block length (and then
in coding complexity and delay) [2, 3].

Indeed, besides the well-known case of a scalar Gaussian
r.v. to be transmitted over a Gaussian channel, where
uncoded and ‘instantaneous’ (also known as ‘single-letter’
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or ‘real-time’) transmission is optimal (in the sense of
achieving minimum quadratic distortion under a power
constraint) [4], there are recent interesting results that prove
the optimality of such uncoded schemes for a class of
Gaussian sensor networks in general [5] (after a scaling-law
optimality of uncoded transmission had been shown
previously to hold for the same class of networks [6, 7]).
The result of [5] has been generalised to the asymmetric
case of different power constraints and noise, and by
considering also the sum power constraint [8].

Notwithstanding these cases, however, the separation theorem
would still apply in other more general situations as, among
others, the Gaussian vector channel considered in [9] (where
the best linear encoder–decoder pair is sought). Interestingly
enough, the best linear solution here (i.e. the uncoded one, in
the sense that the input to the channel is constrained to be
obtained by multiplying the observed values by a matrix,
subject to the overall power constraint) turns out to be
instantaneous (i.e. with block length of 1), and may prevent
some components with low signal-to-noise ratio (SNR) to be
transmitted, in favour of others. General conditions on the
optimality of uncoded transmitter–receiver pairs have been
derived in [3], and the general structure of uncoded
strategies for general Markov sources is analysed in [10].

1.2 Motivation

It is worth recalling, however, that even constraining the
block length to the minimum, the optimal strategies that
IET Commun., 2012, Vol. 6, Iss. 14, pp. 2198–2207
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map the available information into coding and decoding
decisions are in general unknown – with the exception of
the special Gaussian cases cited above – and their
determination entails the solution of a team optimisation
problem with dynamic information structure [11], which
raises formidable difficulties. As such, in the framework of
uncoded transmission, for which optimum linear strategies
have been derived (for both centralised and decentralised
versions, [9, 12] and [13], respectively), our aim is to pose
the problem in the more general case of non-linear
strategies. In this respect, a comparison between ‘decision
theoretic’ and ‘information theoretic’ viewpoints is worth to
be noted. The information theoretic approach, though not
aiming at finding the optimal strategies, but rather the
optimum attainable performance values (minimum average
distortion achievable for a given power or minimum
average power to achieve a given distortion), sometimes
surprisingly yields an answer to the existence of globally
optimal linear solutions. On the other hand, posing the
problem in a team theory setting is extremely hard and
some simplification by restricting the form of the strategies
is needed. This is the aim of the present paper, where we
try to maintain the non-linear structure of the strategies and
highlight its performance impact. We choose the case of a
single source, generating multiple spatially correlated
sensors’ inputs, and decentralised encoding. However, our
formulation can be easily generalised to many other settings.

1.3 Problem setting

More specifically, we consider the problem of the acquisition
of measurements from a source (e.g. Gaussian), representing a
physical phenomenon, by means of sensors deployed at
different distances, which measure r.v.’s that are correlated
with the source output and corrupted by Gaussian noise.
The acquired values are transmitted to a sink (under an
overall power constraint), where an estimation of the source
has to be constructed, according to a quadratic distortion
criterion. The presence of correlated measurements
intuitively suggests that a distortion value sufficiently close
to the optimum one (under a given power constraint) might
be achieved by activating only a subset of sensors among
those deployed in the area, with the aim of a lower power/
bandwidth consumption. This idea has been exploited in
[14], where the authors determine the minimum number of
observations from a subset of the whole population of
sensors that is necessary to achieve a distortion very close
to the optimal one (under the chosen encoding strategy), by
means of successive simulative evaluations with a fixed
topology. We are interested in investigating team decision
strategies for the encoders and the decoder that solve the
same problem. In other words, we want to deploy decision
makers at the sensors and at the sink that are able to decide
upon sensor activation and power assignments, in order to
achieve the minimum distortion level within a given
precision. Since the analytical determination of such team
strategies is, in general, a formidable problem, we resort to
non-linear parametric approximation. Distributed estimation
processes eliminate the need of a single entity performing
the estimation task (the sink node), for example, via data
aggregation [15]. Here, we disregard these approaches
because we want to emphasise how the original problem
(sensor measurements and sink estimation) requires
generalisation of current state-of-the-art solutions. In this
perspective, the S–K mapping used in [16] shows how
IET Commun., 2012, Vol. 6, Iss. 14, pp. 2198–2207
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non-linear coding schemes can provide better performance
than the linear ones. However, the distributed applications
of the S–K mapping to a number of sensors larger than
three and with unequal transmit power and correlations are
still under investigation [16].

1.4 Contribution

Our non-linear approach to the problem leads to the following
results. A better distortion is achieved over linear strategies, in
the presence of non-Gaussian environments (e.g. a source
with uniform distribution). This does not happen in a
Gaussian environment. Most probably, this is because of
the existence of ‘plateaus’ in the cost function, whose
minimum we try to reach via a numerical approximation
[17]. A solution to this is hard to find as well, as the
numerical approximation is based both on a gradient
descent and a penalty function; as such, more sophisticated
approaches (e.g. using second-order partial derivatives) can
be hardly applied. Other non-linear forms are currently
under investigation, for example, by exploiting on–off
encoding or S–K mapping. As far as the power/bandwidth
metric is concerned, our approach gives some significant
improvement to [14], both in the Gaussian and non-
Gaussian case.

The rest of the paper is organised as follows. We define the
problem formally in the next section. Section 3 outlines our
functional approximation approach. Numerical results with
an insightful analysis are presented in Section
4. Conclusions and future work are outlined in Section 5.

2 Problem statement

We consider N sensors deployed over a geographical area,
each one observing a realisation of some physical
phenomenon described by an r.v. S (the source). We adopt
the model of [14], which we describe in the following. We
suppose the observations to take place at discrete time
instants, but, since we are interested in real time, single-
letter coding, we do not introduce the time index in the
following for simplicity of notation. Successive source
outputs are uncorrelated; however, there is spatial
correlation between the source and the event observed by
sensor i, represented by the r.v. Si. As a consequence, the
r.v.’s Si and Sj are also mutually correlated. We indicate by
rs,i and ri,j the correlation coefficients between S and Si,
and between Si and Sj, respectively. Moreover, we suppose
S � N (0, s2), and that all the other variables S1, . . . , SN

are jointly Gaussian, with 0 mean, the same variance s2,
and covariance matrix SS. Measurements are corrupted by
observation noise, so that sensor i observes a realisation of
the r.v.

Xi = Si + Ni (1)

with Ni � N (0, s2
N ), ∀i. The measurements are encoded at

each sensor according to some real-time coding strategy

Zi = fi(Xi) (2)

and the sink receives a channel output of the type

Y = [Y1, . . . , YN ], Yi = Zi + Wi (3)

with Wi � N (0, s2
W ), ∀i. The sink’s decoding strategy is also
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real time and given by

Ŝ = g(Y ) (4)

Functions fi(.), i ¼ 1, . . ., N and g(.) should be chosen to
minimise the quadratic distortion measure

D = E{(S − Ŝ)2} (5)

under the overall power constraint

∑N

i=1

E{Z2
i } ≤ G (6)

This problem, which will be referred to as ‘Problem 1’,
assumes the presence of multiple receiving antennas at the
sink (i.e. of an additive Gaussian noise multiple-input
multiple-output channel), characterised by an identity
matrix. We are therefore in a setting similar to that in [7],
where uncoded transmission is shown to achieve asymptotic
scaling-law optimality in several cases, but not to be exactly
optimal. It is worth noting that another interesting variant of
the problem arises when transmission takes place over a
Gaussian multiple access channel, (MAC), where eqn. (3)
would be substituted by

Y =
∑N

i=1

Zi + W (7)

In [18], the optimality of uncoded transmission schemes is
investigated for two correlated random sources over the
Gaussian MAC, whereas [19] characterises the distortion
pairs that are simultaneously achievable on the two source
components of a bivariate Gaussian source transmitted to a
common receiver by two separate transmitters over an
average power-constrained Gaussian MAC, and proves the
optimality of uncoded transmission for low SNR; the same
problem in the presence of perfect causal feedback from the
receiver to each transmitter is analysed in [20].

With respect to coding–decoding strategies adopted in
[14], no difference would exist between the two settings of
(3) and (7), as we will see shortly. We adopt the case where
richer information is available, to better highlight the
possible gains.

To simplify the analysis, the topology of the network is
considered fixed, namely, no faults or movements of the
sensors are possible. Thus, a static covariance matrix describes
the mutual correlation among the inputs of the sensors. The
matrix depends on the correlation coefficients rs,i and ri,j

(introduced at the beginning of this section) as functions of
the distance between each pairs of source–sensor and sensor–
sensor; we refer to it as topological covariance matrix.

To operate in the same setting as [14] for comparison, the
noise Wi in (3) is ignored from now on. Transmission noises
could anyway be included straightforwardly in our treatment.
We are therefore approximating a setting of decentralised
estimation in the case of high SNR on the transmission
channels (see e.g. [21]), where the data compression part of
the encoding strategy is enforced, by keeping the overall
resource constraint (6). In source coding terms, the problem
falls in the category of chief executive officer problems
[22–24].
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2.1 Linear heuristic for decentralisation

In [14], uncoded transmission is adopted for the sensors; then,
by exploiting the fact that the source observations are
correlated, the minimum number of sensors that need to be
activated to achieve nearly optimal distortion is sought, out
of the total number of deployed sensors. An example may
help understand. We consider both source S and noise in
(1) having standard normal distributions (s2 = s2

N = 1).
Fig. 1 represents a possible deployment of 30 sensors over
a 50 × 50 grid; each element of the topological covariance
matrix, with indexes i, j, is given by s2 . e−dij/10, according
to a power exponential covariance model, dij being the
distance between nodes i, j. In [14], the following coding
strategies are adopted

Zi = fi(Xi) =
����������

Pi

s2 + s2
N

√
Xi (8)

where Pi ¼ G/N is the power limit of sensor i, and the sink
decoding strategy is

g(Y ) = 1

N

∑N

i=1

Ŷi, Ŷi =
E[XiZi]

E[Z2
i ]

Zi =
s2

s2 + s2
N

Xi (9)

We will refer to (8) and (9) here as linear strategies.
We must note that, even if (8) and (9) result in non-exactly

optimal strategies, they represent a reasonable choice for a
distributed environment with possibly unknown sensor
locations and a useful tool to derive insights into the
performance sensitivity of Problem 1. Actually, a non-
uniform power distribution among the sensors under the
global constraint (6), instead of the uniform distribution
implied by (8), is impractical when the position of the
sensors is not under control and the price to pay for some
signalling scheme (reporting the state of each sensor to a
centralised unit) results in excessive computational and
bandwidth overhead. We also must note that no information
about the spatial correlation is exploited by the linear
strategies. This is a natural choice at the sensors, because of
the distributed solution of Problem 1 that is assumed in
[14]; however, at the sink, knowledge of the covariance
matrix might even be assumed, which might be derived
from specific data models, or estimated during a training
phase, as noted in [21].

2.2 Minimisation of the number of transmitting
sensors

Turning back to the topology of Fig. 1, the distortion
performance (5), obtained by linear strategies, is depicted in

Fig. 1 Example of deployment and candidate subsets to optimality
IET Commun., 2012, Vol. 6, Iss. 14, pp. 2198–2207
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Fig. 2, by randomly choosing subsets of active sensors among
the total available ones. On the x-axis we have different
realisations of each subset (of n sensors out of N ), and on
the y-axis the corresponding distortion (D(n)). The power
consumption is always equal to the number of active
sensors (we assume each sensor spends a unit of power to
transmit). Each point is the result of averaging the distortion
over 105 samples of Xi and Ni, i ¼ 1, . . . , 30. The
performance decrease in distortion using three sensors, in
place of 30, can be very low if the three sensors are
accurately chosen, while the power revenue amounts to one
order of magnitude. This result is qualitatively confirmed
when changing the topology, as depicted in Fig. 3, where
different topologies are randomly generated and the
performance loss of D(3) is outlined with respect to its
minimum and average over 20 random samples of the
subset within a given topology.

The performance loss is sometimes surprisingly negative,
so that a specific subset is capable to achieve a distortion
lower than D(30) (under decoding strategy (9), which
ignores the correlation). The final result is that applying a
conservative power consumption scheme (by turning on
only a small number of sensors) does not significantly
decrease the distortion. Fig. 1 reports some candidate
subsets to optimality under the rationale that one should
activate no more than N/10 sensors, out of the N available,
and they should be sufficiently far away from each other in
order to minimise mutual interference [14]. Thus, the
questions we try to answer are:

† Which is the best subset of sensors to be turned on?
† How to find and deploy it in the distributed sensor field?
† How is the solution sensitive to changes in the topology
and in the statistical environment?
† How much computational and bandwidth effort is
required?

The rationale under this analysis is that we know that the
optimal subset depends on some geometric property of
reciprocal sensors’ positions, and we would like the
network to be able to self-learn this subset. A possible

Fig. 2 Distortion for the topology in Fig. 1

Fig. 3 Loss in distortion using three sensors
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approach consists of applying vector quantisation (VQ) of
coding theory. As shown in [14], VQ receives in input the
positions of the sensors and generates a Voronoi partition,
whose centres of the clusters are elected as cluster heads.
Thus, only the sensors in proximity of the cluster heads are
used for communication. As we will see in the performance
evaluation section, this approach does not always lead to
the optimal trade-off between energy/bandwidth usage and
distortion.

We take a different approach here, by trying to determine
the optimal strategies (2) and (4), and by then looking at
the ‘power distribution’ that they entail, which is not
uniform among the sensors (differently from the linear
strategies, which uniformly allocate the available power, see
(8)). Since the strategic optimisation of Problem 1 is a
dynamic team optimisation problem with non-nested
information structure, for which no analytical solution is
available, we attempt to approximate the optimal strategies
by means of non-linear parametric approximating functions
based on neural networks, in order to get some insight into
their structure.

3 Non-linear parametric approximation of
the optimal strategies

In this perspective, we reformulate Problem 1 by letting the
coding and decoding strategies (2) and (4) depend on some
non-linear approximation scheme. The following coding-
decoding strategies are derived for a static topological
covariance matrix. This assumption will be relaxed later.
We introduce non-linear approximating functions in (2) and
(4), by replacing them with

Zi = fi
_

(Xi, wfi
) (10)

Ŝ = g
_

(Y , wg) (11)

where we choose f
_

(·) and g
_

(·) to be neural networks
depending on the choice of the basis functions (e.g.
sigmoid) of each layer, and wfi

and wg are vectors of
parameters activating the basis functions. As already
mentioned, the application of the entire vector Y ¼ [Z1, . . . ,
ZN] at the decoder in (11), helps highlight the performance
gain induced by taking into account the topological
structure (through explicit consideration of the cross-
correlation in the strategies). Equations (10) and (11) are
called neural coding and decoding strategies. Replacing (2)
and (4) in the cost (5) with the neural strategies leads to the
following parametric optimisation problem (Problem 2)

wo
fi
, wo

g = arg min
wfi

,wg

J (wfi
, wg); J (wfi

, wg) = E{(S − Ŝ)2}

Ŝ = g
_

([f1
_

(X1, wf1
), . . . , fN

_

(XN , wfN
)], wg); i = 1, . . . , N

(12)

in order to find the optimal neural strategies f o
i

_

(·) = fi
_

( · , wo
fi
)

and go
_

(·) = g
_

( · , wo
g) under constraint (6): wfi

, i = 1, . . . , N :

S
N
i=1E{f 2

i

_

(Xi, wfi
)} ≤ G. How the optimal neural strategies

are capable to introduce a performance gain in the
distortion and to distribute the resource among the sensors
better than the linear strategies is studied in the next
2201
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section. [The rationale behind the choice of modelling a
single source in both Problems 1 and 2 is to be compliant
with the methodology outlined in [14] and to simplify the
analysis. However, the generalisation of both the proposed
model and the numerical approach proposed to address
Problem 2 to the multi-source case, as, for example, in [13],
is straightforward. The application of other probability
distributions is straightforward as well; some results are
reported later in this perspective.].

Before that, some additional words are necessary for the
technical details about the solution of Problem 2. Resorting
from a team decision formulation, lying on a functional
optimisation problem (Problem 1, in this case), to a
parametric approximation (Problem 2) is known as Extended
Ritz method [25]. Without entering any theoretical discussion,
it is only worth noting that such a technique has been
recently applied to the telecommunication field with some
success, even when no analytical expressions for the
dynamical system and the functional cost are available [26].
For the specific case of this paper, Problem 2 can be solved
by a numerical gradient descent method as follows. Since a
closed-form expression of the expected cost J(.) in (12) is
not easily available, J(.) is substituted by its Monte Carlo
estimation J̃ (·), J̃ (·) being the arithmetic average over a
given number J of realisations of the r.v.’s. More
specifically, J different samples of Xi and Ni, i ¼ 1, . . . , N,
are generated on the basis of the topological covariance
matrix [The generation of the jointly Gaussian samples of
Xi requires the Cholesky factorisation of the matrix (see,
e.g. the appendix in [27]).] and the distortion is computed
under a given structure of the neural strategies (i.e. wfi

and
wg are fixed). Then, the next step (k + 1) for wfi

and wg in
the direction of the (hopefully global) minimum of J(.) is
(for i ¼ 1, . . . , N )

wg(k + 1) = wg(k) − hg(k)∇wg
J̃

D
(wfi

(k), wg(k)) (13)

wfi
(k + 1) = wfi

(k) − hfi
(k)[∇wfi

J̃
D

(wfi
(k), wg(k))

+ ∇wfi
J̃

P
(wfi

(k), wg(k))]
(14)

where J̃
D

(·) = S
J
6=1(S6 − S̃

6
)2, S6 and S̃

6
being the 6-samples

(out of J samples, at each step k) of the source and
its neural estimation at the sink, respectively;
J̃

P
(·) = Kp · ([1/J]SJ

6=1S
N
i=1P̃

6

i − G)2, P̃
6

i being the 6-sample
of the square of the output of the ith sensor. Quantities hg

and hfi
, i ¼ 1, . . . , N, are the gradient descent step sizes.

Concerning the gradient of neural sensors, we know that
their position in the decision chain is just before the sink;

thus ∇wg
J̃

D
(·) and ∇wfi

J̃
D

(·) are derived from the chain

equations of the back-propagation used for training neural

networks [28], initialised by ∇Y J̃
D

(·) = (2/J)SJ
6=1 (S6 −

S̃
6
), together with ∇Zi

J̃
P
(·)|Zi=Z̃i

= (4KP/J)·
(SJ

6=1S
N
i=1P̃

6

i − G)Z̃
6

i , Z̃
6

i being the 6-output of the ith

sensor. The application of the penalty cost function J̃
P
(·) is

necessary to match constraint (6). The appendix reports the
pseudocode for the implementation of the training procedure.

3.1 Convergence

As far as convergence of (13) and (14) to the solution of
Problem 2 is concerned, we must note that they belong to
the family of stochastic approximation algorithms [29], for
2202
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which weak convergence guarantees are available (apart
from the decreasing behaviour of the gradient step sizes).
The underlying ‘hope’ is that the form of the gradients
above is sufficiently ‘regular’ to support the (actually,
optimistic) consideration that every next step k + 1
produces an improvement in the neural strategies in the
direction of the optimal ones (see, e.g. Section 3.2 of [30]
for details on the weak convergence properties of neural
dynamic programming). Further considerations are also
necessary concerning the possible gap between the obtained
solution of Problem 2 and the solution of Problem 1. This
involves some discussion about the statistical learning
capability of neural schemes, which depends on the chosen
approximating structure (number of sensors and neural
layers, form of the basis functions). Also for this gap weak
(even if very important) guarantees are applicable [25].
Nevertheless, it is widely recognised that the poor
guarantees of numerical methods for the Extended Ritz
problem, or of neural dynamic programming, do not
encumber their performance improvement for control
decision problems otherwise impracticable for exact (e.g.
dynamic programming) or heuristic solutions. The
performance gain introduced in the sensor field is presented
in the next section.

3.2 Computational effort

It is worth remarking that the computational effort required by
the training algorithm (13)–(14) does not influence the
on-line performance of the system. In real time, the
optimised neural strategies (10) and (11) are applied,
obtaining coding and decoding decisions ‘almost instantly’.
It is also worth noting that the computational time of the
training algorithm increases linearly in the number of
sensors (this has been validated by a large simulation
campaign using different topologies); with 50 nodes, the
order of magnitude of the time required by the training
algorithm (using regular back-propagation) to complete
successfully is around ,30 min on a standard computing
platform (e.g. Intel processor@1.73 GHz).

4 Performance evaluation and discussion

In this section, we first compare linear and neural strategies
for encoding/decoding under Gaussian and uniform
distributions. Since the neural approach allows non-uniform
resource allocation, it can be easily used as a heuristic for
sensor activation; it is therefore compared with the VQ of
[14]. A fixed topology is used in order to visualise sensor
activation choices. All the combinations of strategies are
considered. The impact on the network lifetime is
investigated as well. After the analysis on a fixed topology,
we show how to tackle variable topologies. Since this leads
to the need of a localisation scheme, a further performance
evaluation shows how the neural approach is robust to
topology changes.

As said above, the performance evaluation is first related to
the network of Fig. 1. The source S and noise in (1) have
standard normal distributions (with unitary variance). We
suppose that for linear strategies each sensor cannot
transmit with more than one unit of power. The constraint
over the overall resource consumption used in Problem 2 is
therefore G ¼ 30. Neural strategies are based on one-hidden
layer neural networks with hyperbolic tangent neural units
(one unit for each sensor and 2 units for the sink). Gradient
step-sizes have both the form 1/(500 + k); the penalty cost
IET Commun., 2012, Vol. 6, Iss. 14, pp. 2198–2207
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function parameter Kp is 0.25 and J ¼ 105. The training
phase (13) and (14) took 18 min over an Intel
processor@1.73 GHz.

4.1 Optimal resource allocation

The resource allocation at the end of training is G. Despite all
sensors are active, the final distortion after training is only
2.73% over the one guaranteed by linear strategies
(D ¼ 0.952 for linear strategies against D ¼ 0.978 for
neural ones). Looking accurately at Fig. 2, one might argue
that the neural strategies here fail optimising the distortion
performance, because two samples (out of 100) of D(3), in
Fig. 2, can outperform D(30). This is probably because of
the presence of local minima in the cost function of
Problem 2 (a frequent situation when training neural
networks). However, this does not influence the most
important information we derive from the neural analysis.
The resource allocation, depicted in Fig. 4, states an
important difference from linear strategies. The possible
candidate subsets of sensors to be turned on are: {3, 8, 14,
18, 19} or {8, 18, 19}, whose power level is above or just
in proximity of the line corresponding to P ¼ 1.5 in Fig. 4
(a heuristic discriminating power level for sensor
activation). It is worth noting that, according to an
extensive simulation campaign over different topologies and
by increasing the number of sensors (not reported here for
the sake of synthesis), a reasonable rule of thumb to
automatically tune such a discriminating power level is to
set it to the average power obtained by the sensors at the
end of training, increased by three times its variance. In
reality, our ultimate goal here is to seek a compression of
data, in terms of a reduction in the bandwidth (number of
transmitting sensors, and so of needed channels), which is
‘implicitly’ induced by constraint (6). For this reason, we
prefer to speak more generically of ‘resource’, rather than
‘power’, consumption.

Table 1 reports the distortion and resource consumption of
different combinations of linear and neural strategies for the
topology under investigation. The best subset reveals to be
{8, 18, 19} (more marked circles in Fig. 5), because the
other one only introduces a waste of resources. The most
effective improvement is made by the introduction of the
neural strategy at the sink, because using the (unequally
scaled) linear strategies (for the discovered subsets),
together with neural decoding, guarantees the best
performance. This is also corroborated by a comparison
with the optimal linear decoder for a Gaussian channel [9]
(‘Linear Sensor – Optimal Linear Decoder {8,18,19}’ in
Table 1), in place of the neural sink, applied to the subset
{8, 18, 19}. Such a decoder, jointly with the linear coding
strategies, explicitly exploits the topological covariance
matrix. The neural sink outperforms the optimal linear
decoder because the latter is in any case a consequence of

Fig. 4 Topology in Fig. 1: Power allocation by neural strategies
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the simple linear coding scheme, which oversimplifies the
structure of the linear decoder itself.

Table 1 and Fig. 5 also include the performance of the VQ
mentioned in Section 2.2. The VQ is applied for the activation
of different subsets composed by: two sensors (triangles in
Fig. 5), four sensors (squares), up to six sensors (stars). The
VQ does not lead to the optimal trade-off between energy
consumption and distortion, even when the neural sink is
applied (see Table 1). The rationale of this relies on the fact
that the VQ works only with the geographical coordinates
of the nodes, thus not exploiting the effect of each step of
the VQ algorithm (at each step, a new couple of candidate
codewords are generated by splitting a single one; see, e.g.
http://www.data-compression.com/vq.html for details) on
the real distortion (5) as our approach does. Thus, despite
both VQ and the neural strategies learn the principle of
activating sensors close to the source and sufficiently
separated to avoid their reciprocal interference (see Fig. 5),
the neural approach performs the analysis more efficiently.
The approximation made by the VQ is evidenced by the
distortion achieved by the ‘Linear Strategies VQ {6, 14, 8,

Table 1 Performance under different combinations of strategies

under the Gaussian case

Distortion Resource

units

linear strategies with N ¼ 30 0.952 30

neural strategies with N ¼ 30 0.978 29.93

linear strategies {8, 18, 19} 1.151 3

neural strategies {8, 18, 19} 0.999 3.72

linear sensor – neural sink {8, 18, 19} 0.999 3

linear sensor – optimal linear decoder

{8, 18, 19}
1.015 3

neural sensor – linear sink {8, 18, 19} 1.653 3.73

linear strategies {3, 8, 14, 18, 19} 1.1 5

neural strategies {3, 8, 14, 18, 19} 0.999 5.79

linear sensor – neural sink {3, 8, 14, 18, 19} 0.999 5

neural sensor – linear sink {3, 8, 14, 18, 19} 1.52 5.8

linear strategies VQ {15, 17} 1.20 2

linear strategies VQ {6, 14, 8, 29} 1.48 4

linear strategies VQ {1, 6, 14, 10, 8, 20} 1.0 6

linear strategies VQ – neural

sink {15, 17}
1.0 2

linear strategies VQ – neural

sink {6, 8, 14, 29}
1.0 4

linear strategies VQ – neural

sink {1, 6, 8, 10, 14, 20}
1.0 6

Fig. 5 Topology in Fig. 1: Sensor activation with: VQ (triangles,
squares and stars) and neural strategies under Gaussian (circles
with s# label) and uniform (arrows) distributions
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29}’ case, which is surprisingly higher than the ‘Linear
Strategies VQ {15, 17}’ case.

To summarise the Gaussian case (Table 1), neural and linear
distortions are not dissimilar, but the best combination of
distortion and resource allocation is achieved with linear
strategies and neural sink using three sensors under both VQ
and neural choices for sensors activation.

The reliability of the neural strategies is corroborated even
more by the application of the uniform distribution (between
0 and 1) at the source (the sensor inputs are still under a
Gaussian noise). In this case, the repetition of the training
leads to a different choice for sensor activation, which is
depicted by the arrows in Fig. 5; filled arrows denote the
first three chosen sensors, empty arrows denote the other
two sensors with high resource allocation at the end of
training. It is interesting to note that two filled arrows are in
common with the VQ choices, one filled arrow is in
common with the neural choice (sensor #18), one empty
arrow is in common with VQ and neural strategies (sensor
#8), one empty arrow has nothing in common with the
other techniques. The performance under the uniform
distribution is reported in Table 2. The neural distortion
using all the sensors is better than the linear one. The
adoption of either the linear strategies alone or of the VQ
alone leads to poor performance.

To summarise the uniform distribution case (Table 2), the
best distortion is achieved under the neural approach; the
optimal trade-off between distortion and resource allocation
is therefore guaranteed by linear sensors and neural sink with
three sensors. The rationale of this behaviour is due to the
fact that VQ is independent of the used distributions, while
the neural approach is adaptive to the stochastic environment.

One final remark regards the architecture of the
approximating functions. It was determined experimentally
by progressively increasing their complexity, until no
significant increase in the distortion occurred. With the
following combinations of hyperbolic tangent neural units
at the sensors and sink, respectively: 1-1, 1-2, 1-5, 2-1, 2-2,
the achieved distortions of the training resulting in Fig. 4
were: 0.992, 0.978, 0.974, 1.002 and 0.973. The 1-2

Table 2 Performance under different combinations of strategies

under the uniform distribution case

Distortion Resource

units

linear strategies with N ¼ 30 0.0871 30

neural strategies with N ¼ 30 0.0832 29.88

linear strategies {6, 18, 20} 0.198 3

neural strategies {6, 18, 20} 0.08344 5.70

linear sensor – neural sink {6, 18, 20} 0.0886 3

neural sensor – linear sink {6, 18, 20} 0.214 3.26

linear strategies {6, 8, 18, 20, 23} 0.257 5

neural strategies {6, 8, 18, 20, 23} 0.08341 8.16

linear sensor – neural sink {6, 8, 18, 20, 23} 0.0853 5

neural sensor – linear sink {6, 8, 18, 20, 23} 0.689 5.78

linear strategies VQ {15, 17} 0.367 2

linear strategies VQ {6, 14, 8, 29} 0.254 4

linear strategies VQ {1, 6, 14, 10, 8, 20} 0.177 6

linear strategies VQ – neural

sink {15, 17}
0.1267 2

linear strategies VQ – neural

sink {6, 8, 14, 29}
0.1088 4

linear strategies VQ – neural

sink {1, 6, 8, 10, 14, 20}
0.0931 6
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combination was then preferred as the best compromise
between performance and minimum number of neural units
(the adoption of sigmoid units achieved larger distortions).
It is commonly recognised that this empirical method is
suitable to avoid over-fitting, thus improving the
generalisation capabilities of the approximating functions
(see, e.g. Section 7.4 of [31]). Over-fitting appears in
particular when the structure of the approximating function
is more complicated than necessary. The generalisation
capabilities of our scheme outperform the linear ones, as
validated in Section 4.3 of [32], in which a sequence of test
sets are applied, with different increasing variances from the
ones used during training.

4.2 On the distortion-lifetime trade-off

Network lifetime is another important topic. In this perspective,
we compare VQ and the neural approach by progressively
activating only three sensors each time under the following
conditions. The total number of sensors is 15 and they are
uniformly randomly distributed over a square, whose side is
50 m. Each time three sensors consume their total energy,
the VQ and the neural analysis are repeated on the remaining
sensors and other three sensors are activated. The source
follows a normal distribution. A noise is added to the
channels on the sensors’ outputs (i.e. we are looking for joint
source-channel coding); the linear strategies can be easily
updated under the presence of a noisy channel. The noise
follows a uniform random distribution in [m, mMax],
mMax ¼ m+ [0, m], m being a measure of the quantity of
noise affecting the transmission; mMax is different for each
sensor by following a uniform distribution in [m, 2m]. The
input noise of each sensor follows a Gaussian distribution
with a variance following a uniform distribution in [0, (m/3)]
(among the sensors). The quantity m is increased from 1.0 to
7.0 in order to build heterogeneous channel conditions, thus
making the choice of sensors’ activation very difficult.

In this situation, the activation choices (denoted with the
sensors’ indexes) for VQ are: {9 12 14, 2 4 13, 1 7 8, 0 3
5, 10 11 6} and, for the neural approach: {6 12 14, 1 9 10,
0 5 8, 2 4 13, 3 7 11}, {4 9 11, 3 8 12, 2 6 14, 5 7 10, 0 1
13}, {2 6 12, 0 5 8, 3 4 9, 10 11 13, 1 7 14} and {0 9 11, 5
12 14, 4 6 10, 3 7 8, 1 2 13}, with m equal to 1.0, 3.0, 5.0
and 7.0, respectively. Being VQ based on the sensors’
reciprocal distances only, it does not change over variable
probability distributions. On the other hand, the neural
choices are also sensitive to the stochastic environment.

The corresponding achieved distortions are as follows. d is
always 1.0 with the neural strategies, even though linear
sensors are used after training (neural sensors are used only
for the training phase). On the other hand, the VQ
distortion increases from 1.23 up to 3.86 when m is 7.0.

As far as the lifetime is concerned, the first-order radio
model for energy consumption is used. By following [33],
the energy cost of transmission is KTx = 1ampr2

c , being 1amp

the energy cost of the transmitter amplifier and rc being the
sensor range, assumed equal to the size of the square. We
disregard the cost for sensor activation, because it is
constant for both VQ and the neural strategies. The lifetime
of the network is therefore (E0/ETx) · t̂, being E0 the
quantity of energy available in each sensor, ETx ¼ KTxm, m
being the number of transmitted bits and t̂ being the
frequency of transmissions. Under the following setting of
the energy parameters: E0 ¼ 1J, 1amp ¼ 10 pJ/bit/m2, and
with m ¼ 32 bits and t̂ = 1 ms, the lifetime is 2.4 h for both
VQ and the neural approach (always linear strategies are
IET Commun., 2012, Vol. 6, Iss. 14, pp. 2198–2207
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used at the sensors; the lifetime of three sensors, used in
parallel, is 28.83 min). If we consider the lifetime and
distortion metrics jointly, it is straightforward to conclude
that if a better distortion is pursued under VQ, a higher
number of sensors should be used in parallel (at least four),
thus affecting the corresponding lifetime.

4.3 Variable topologies

As far as variable topologies are concerned, similar results to
Section 4.1 have been obtained with other kinds of topologies
and considering the presence of 50, 70 and 100 sensors, by
using Gaussian and uniform distributions at the source and
by changing the u1 parameter in the power exponential
covariance model (introduced in Section 2.1): s2 . e−dij/u1 ;
higher u1 means more correlation among the sensors. The
results of these tests are summarised here. In the Gaussian
case, the distortions at the end of training are often higher
than the ones obtained by the linear strategies. In the
uniform distribution case, a distortion improvement is
achieved by the neural strategies, whose average value is
12% when u1 decreases from 25 to 1; with higher u1 values
no improvement is registered. This means the neural
strategies achieve better distortion with the uniform
distribution when the correlation among the sensors
decreases. These results have been validated under 100
repetitions with different topologies until the confidence
interval over the percentage difference between the neural
and linear distortions is below 1% point in 95% of the cases.

To make the mechanism adaptive to topology changes, the
optimal subset should be discovered by the neural approach,
the subset should be activated and the other sensors should be
turned off by using some signalling scheme. This action can
be performed by some centralised unit, usually the sink node
itself. Thus, one last and most crucial question naturally arises:

† How can we discover the optimal subset with time-varying
topologies without restarting the training phase from scratch?

In other words, the ultimate goal is to obtain a method
capable to let the network learn the optimal subset of
sensors to be turned on in dependence of the current
topology. The method can be informally described as
follows. First of all, a localisation method is needed for the
sink to know the current geometry of the topology
(information about the reciprocal distances among the nodes
is sufficient). Then, the family of optimal resource
consumption curves (as in Fig. 4) can be learned off-line by
the sink by using again a neural approximation scheme.
More specifically, since each optimal resource consumption
curve derives from a specific topology (thus from a specific
topological covariance matrix), a given function exists that
maps the set composed of optimal resource allocations with
the set of corresponding topologies. The numerical
approximation of this function, called optimal resource
mapping, can be easily obtained, because it consists of
solving a problem easier than Problems 1 or 2 (actually, it
does not involve any random quantity). A similar approach
has been successfully employed in [34] to approximate the
solutions of a (computationally expensive) pricing
optimisation problem, as a function of variable network
bottlenecks and traffic demands. Once the optimal resource
mapping is updated at the sink, together with the current
distances among the nodes, the sink becomes capable to
optimise the performance (as discussed for Tables 1 and 2)
with a small computational effort. The prices to pay are a
IET Commun., 2012, Vol. 6, Iss. 14, pp. 2198–2207
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given amount of bandwidth dedicated to turn on and off the
sensors and the adoption of a localisation system.

4.4 Localisation

In this perspective, some additional words are necessary
concerning localisation. Several techniques are available in
the literature concerning localisation over sensor networks.
As explained in the previous subsection, what is needed here
is making available at the sink the set of the relative
distances among the nodes. This does not involve the
adoption of complex localisation approaches by using, for
example, anchor-based schemes, which are suited to derive
absolute coordinates in place of relative ones (see, e.g.
chapter 9 in [35]). However, the problem of how much the
accuracy of the localisation system influences the optimal
resource mapping is the critical issue. As such, we analyse
the sensitivity of the optimal resource mapping as a function
of the position of the source. The rationale behind this choice
relies on the fact that source localisation is the most critical
issue owing to source’s mobility (which is actually more
likely than the mobility of the sensors). Moreover, the
problem of source localisation over sensor networks is quite
complicated, as it requires some form of collaborative
computation among the sensors using different techniques to
exploit the physical features of the source (e.g. acoustic
against seismic) and of the sensing environment (e.g. the
signal propagation speed); an excellent overview can be
found in [36]. Thus, without entering any detail, we must
note that updating the optimal resource mapping frequently
by the localisation system could result in bandwidth and
computational burden, which may make the application of
the proposed system quite impractical. This is however, not
the case, in virtue of the sensitivity properties of the optimal
resource mapping with respect to topological changes. An
example is reported in Fig. 6, where the optimal subsets of
sensors are highlighted as a function of different positions of
the source. The source is indicated by the different squares in
Fig. 6. Actually, the source moves around a cross centred in
the middle of the sensing field (30 sensors are randomly
deployed over a 50 × 50 square as in Fig. 1; source and
noise have normal distributions). As done for Fig. 6, a circle
is marked around a sensor each time that sensor is chosen
after training in virtue of the final resource allocation.
Despite the different positions of the source, an optimal
subset of sensors is derived by the neural analysis, which is
thus robust to the actual position of the source.

This is corroborated by Table 3, where the quadratic
difference, dd, between d∗, the distortion obtained by the

Fig. 6 Activation of sensors after training with different positions
of the source (positions are indicated by the squares in the picture)
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adoption of the optimal subsets obtained in correspondence of
each new position of the source, and d

′
, the distortion

achieved in all cases with the optimal subset obtained for
the source placed in the centre of the field, is outlined. The
dd quantity is always very low (it is several orders of
magnitude lower than the absolute distortion values, which
are around 1.0, similarly to Table 1), thus meaning that the
optimal resource mapping can be actually not aware of the
exact location of the source, without incurring in any
distortion degradation. In other words, the optimal subset of
sensors obtained when the source is in the centre of the
square reveals to be a suboptimal choice for all of the other
cases when the source is located elsewhere. Comparable dd

performance values are obtained with respect to other
derivations of d

′
, which is computed in correspondence of

the other positions of the source depicted in Fig. 6. The
generalisation of this result leads to the conclusion that a
localisation method with stringent time constraints is not
mandatory. The price to pay for updating localisation data
over large time scales (thus in respect of the bandwidth and
computational constraints of the sensor technology in play)
is obtaining suboptimal distortion performance, which can
be considered in any case acceptable in virtue of the
provided resource saving. Suboptimal performance arises in
the worst case when the optimal resource mapping is not
updated with the actual distances among the nodes. We
verified similar results to Fig. 6 and Table 3 (almost
distortion invariance of the optimal resource mapping to
topology changes), by changing the deployment of a subset
of sensors without updating coherently the optimal resource
mapping, until the cardinality of that subset becomes higher
than 32.5% of the total number of nodes. Any increase over
that threshold in the number of sensors, (whose locations
the optimal resource mapping is not aware of) implies
distortion deterioration over 42.6% of the optimal one (this
was validated through an extensive simulation campaign
with up to 100 nodes). That threshold can be considered as
an empirical ‘rule of thumb’, defining when updating the
optimal resource mapping with actual localisation data is
necessary. In practice, as having a sudden change in the
deployment of more than 32.5% of the nodes can be
considered a rare event (almost impossible in several
applications where the position of the sensors is fixed), at
least suboptimal performance is always guaranteed.

5 Conclusions and future work

The paper has presented a non-linear optimisation approach to
sensor networks. The result obtained is the activation of a
small number of sensors, reducing resource utilisation

Table 3 Distortion error dd with different subsets of sensors

(obtained after training) and with different positions of the source

Position of the source Subsets after training dd

25–25 (centre of the square) 6, 18, 20 0

25–0 12, 18 4.00E-04

0–25 12, 18, 20 1.00E-04

25–50 6, 12, 20 4.84E-04

50–25 12, 18, 20 4.72E-04

12.5–25 12, 18, 20 4.00E-04

25–12.5 12, 18 1.44E-04

25–37.5 6, 12, 18, 20 1.00E-06

37.5–25 12, 18 1.44E-04
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without introducing significant loss in the distortion
achieved at the sink. Future work mainly concerns
exporting the analysis towards real protocols. This would
lead to a slightly different statistical environment than the
Gaussian and uniform distributions considered here. Our
numerical approach should be capable to capture the
inherent ‘optimal power mapping’ also in more general
conditions and to investigate its performance sensitivity.
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7 Appendix: training algorithm

The pseudocode for the non-linear parametric approximation
of the optimal strategies is reported below. The ∇Back
Propagation Sink and ∇Back Propagation Sensor[i] variables
denote the initialisation of the back-propagation used to
update the internal weights of the neural networks under a
gradient-based procedure. The equations of the procedure are
not reported for the sake of synthesis (details can be found in
[25]). The ‘team’ relation between sensors and sink can be
appreciated from the dependence of ∇Back Propagation
Sensor[i] on the gradient of the sink inputs (see instruction
on the row just before the training of the sinks) (Fig. 7).
Fig. 7 Set the position of the sensors
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